Parent-Pupil

MATES
Information File
Measures
for SEAG En nce ss sment

PMP Publications

Other titles available from PMP Publications
for SEAG Entrance Assessment preparation

Contents

Introduction

This Information File is a comprehensive revision package in Maths covering all aspects of the Measures attainment target as required for the SEAG Entrance Assessment. The 4 books in the series provide a comprehensive revision guide for parents, and also covers the mathematics requirements of The Northern Ireland Curriculum for the end of Key Stage

It should be understood, however, when using the book processes can often be performed in more than one prescril
 some children the methods outlined within the might not a the door' to understanding.

We recommend that when a child is specific mathematical process that pa teacher to discuss the nature of prob

The Information File comp

* A comprehensive re
file detailing informatio children sh

* A varie example questions, with annotated step by step procedures illustrating how answers can be calculated.
* 3 practice tests that mirror the format of the maths element of the SEAG Entrance Assessment.

\qquad

Length

Length can be measured in：
米 MILLIMETRES（mm），
米 CENTIMETRES（cm），
米 METRES（m）
or
光 KILOMETRES（km）．
Length can be estimated using some common everyday med parts，e．g．arm span，hand span，digit，palm，stride，foot，etc．

NEED TO KNOW

Children should know and recognise a variety of equivalent lengths expressed either as fractions，whole numbers or decimals， e．g． $1 / 2 \mathrm{~km}=0.5 \mathrm{~km}=500 \mathrm{~m}$ ．
Equivalent Lengths

10 mm	$=1 \mathrm{~cm}$
100 cm	$=1 \mathrm{~m}$

1．Metres and centimetres

Example question

Which length below is equivalent to $1 / 4 \mathrm{~km}$ ？
A 750 m
B ． 0250 km
C 250 m
D 25 cm
E 0.25 m

Answer：C 250 m

3 Calculating an area of a shape by counting squares

Calculate the area of this shape:

Count the number of whole squares:

$$
4=4 \mathrm{~cm}^{2}
$$

Step 20 ${ }^{\circ}$
Count the number of half squares: 4 half squares $=2$ whole squares
$=2 \mathrm{~cm}^{2}$
Step 30 add the totals together: $4+2=6 \mathrm{~cm}^{2}$

4
4 Calculating the area of an irregy
The approximate area of an irre counting the number of w
squa
side a shape and adding to this the number of half square half-filled should berinnore
a shape. Squares less than

$x=$ whole squares
o = $1 / 2$ square or more
$17 \Longrightarrow$ whole squares
$\Rightarrow 1 / 2$ squares or more
\qquad
$26 \mathrm{~cm}^{2}=$ (approximate area)

Step 105 count the total number of whole square.

Count the total number of whole squares, and put an ' X ' in each

Step 2f count the total number of squares which are half-filled or more,

 and put an ' O ' in each square.
Step 3nd the total number of whole and half-filled or more squares (Xs and Os).

Time

Two types of clock can be used to display time：

1．Analogue clocks （with hands）

2．Digital clocks（with figures）

Time Equivalents
60 seconds＝ 1 minute

NEED TO KNOW

Children should：
米 know how to tell the time in analogue and digital form
＊know time equivalents
米 know how to change from 12
hour to 24 hour time
米 understand
use timetables and calen
2 weeks $=1$ fortnight

365 days＝ 1 year
366 days＝ 1 leap year

100 years＝ 1 century

A leap year around every 4 years，e．g．2016，2020，2024，etc．To calculate whether a certain year is a leap year you divide the number by 4．If there is no remainder the year is a leap year． e．g．

$\Rightarrow 2022$ is not a leap year
$\Rightarrow 2024$ is a leap year

Children may be asked to calculate the difference between two times.

2 A man started work at 6:45 a.m. and finished work at 4:15 p.m.
How long did he spend at work?
$\mathrm{hr} \quad \mathrm{min}$

Step (1)'s convert both times to 24-hour clock times:
6:45 a.m. \Rightarrow 06:45
4:15 p.m. $\Rightarrow 16: 15$
Step 20 subtract the two times

$9 \mathrm{hrs}+30 \mathrm{mins}=9 \mathrm{hr} 30 \mathrm{~min}$

Measures

Test 1

Children should have $\mathbf{3 0}$ minutes to complete this test.

Candidate's Name

DATE OF TEST					
Day		Month		Year	

 that is $23 \mathrm{~cm} \times 56 \mathrm{cn}$.

Which calculation ye ctast to the actual answer?

3 What is the volume of the oil tank in the picture?

3.5 m

A $60 \mathrm{~m}^{3}$

22 Each side of a regular octagon is 6.6 cm long.

What is the perimeter of the octagon?
A 39.6 cm
B 33 cm
\square
C 52.8 cm
\square
D 66 cm
\square
E 43.56 cm

For questions 23-28 you have to write your answers, neatly, in the box beside the question.
23 What is the difference in volume between the larg and mallest containers?

25 A hardware shop sells rolls of string, 25 m in length.

How many 25 cm lengths of string can be cut from each roll?

28 Richard wants to travel from Sheffield to London by train. He needs to arrive in London by 3:30 pm.

What is the latest time that Richard can leave Sheffield?
Write your answer in 12-hour clock notation.

X \checkmark

Test 3

see page 52

1. $\quad D-900 \mathrm{~cm}^{3}$
2. $B-3 h 35 m$
3. $E-4.2$ l
4. $C-1.75 l$
5. $\quad B-42 \mathrm{~cm}$
6. $\quad E-16: 30$
7. $C-36 \mathrm{~cm}$
8. A
9. $D-193 \mathrm{ml}$
10. $C-81 \mathrm{~cm}^{2}$
11. $D-40$
12. $\mathrm{C}-10^{\circ} \mathrm{C}$
13. $B-13: 00$
14. $E-168 \mathrm{~cm}^{3}$
15. $E-50 \mathrm{~m}$
16. $E-c m$
17. $D-1.8 \mathrm{~kg}$
18. $C-3.25 l$
19. $D-36 \mathrm{~cm}^{2}$
20. B - 25 mins
21. E-ruler
22. D - 594
23. $216 \mathrm{~cm}^{3}$
24. $18^{\circ} \mathrm{C}$
25.
26.
27.
28.

